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Abstract

Drug resistance remains a major problem for the treatment of HIV. Resistance can occur due to mutations that were present
before treatment starts or due to mutations that occur during treatment. The relative importance of these two sources is
unknown. Resistance can also be transmitted between patients, but this process is not considered in the current study. We
study three different situations in which HIV drug resistance may evolve: starting triple-drug therapy, treatment with a
single dose of nevirapine and interruption of treatment. For each of these three cases good data are available from
literature, which allows us to estimate the probability that resistance evolves from standing genetic variation. Depending on
the treatment we find probabilities of the evolution of drug resistance due to standing genetic variation between 0 and
39%. For patients who start triple-drug combination therapy, we find that drug resistance evolves from standing genetic
variation in approximately 6% of the patients. We use a population-dynamic and population-genetic model to understand
the observations and to estimate important evolutionary parameters under the assumption that treatment failure is caused
by the fixation of a single drug resistance mutation. We find that both the effective population size of the virus before
treatment, and the fitness of the resistant mutant during treatment, are key-parameters which determine the probability
that resistance evolves from standing genetic variation. Importantly, clinical data indicate that both of these parameters can
be manipulated by the kind of treatment that is used.
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Introduction

For most HIV patients, treatment with modern antiretroviral

therapy leads to a rapid decline of viral load (VL) of several orders

of magnitude. However, when the virus acquires resistance to one

or more drugs, treatment can fail. It is still an open question

whether the mutations responsible for resistance originate usually

from standing genetic variation (also referred to as pre-existing

mutations or minority variants), or from new mutations which

occur during therapy. In fact, there is no single biological system

for which the relative role of pre-existing and new mutations is well

known [1]. Another important open question is whether multiple

simultaneous mutations are needed for the viral population to be

able to grow during therapy, or whether a single mutation allows

escape. Amongst evolutionary biologists, it is commonly assumed

that therapy with multiple drugs works so well because the virus

needs multiple mutations to escape, which is unlikely to happen.

However, patient data show that patients often fail therapy with a

single resistance mutation [2,3] which suggests that a single

mutation can increase the fitness of the virus to above 1, even

though the virus is still susceptible to two of the drugs in the

treatment. In this scenario, the main benefit of combination

therapy over monotherapy would be that combination therapy

reduces the population size of the virus and therefore the

probability that mutations occur. In this study we will analyze

patient data under the assumption that a single mutation can lead

to virologic failure and thereby propose an alternative view on the

evolution of drug resistance during multi-drug therapy.

We will look at the establishment of drug resistance mutations in

three different situations: (1) when triple-drug therapy (ART) is

started for the first time, (2) when pregnant women are treated

with a single dose of nevirapine (sdNVP) to prevent infection of the

baby during birth and (3) when ART is interrupted and restarted

(an overview of abbreviations is given in table 1). We will argue

that standing genetic variation plays a crucial role in each of these

cases. We find that the probability that resistance mutations

become established in each of these cases can be understood by

using a simple population genetic model.

For readers who are not familiar with HIV, it is important to

know that the genotype-phenotype map for drug resistance in HIV

is very well known. Lists of the important resistance mutations for

each drug are published (e.g., in the International AIDS Society–

USA drug resistance mutations list, [4], so that doctors can

compare the genotype of the virus of a patient before treatment

with this list to decide which drugs to prescribe. The aim of

treatment is to achieve viral suppression. If treatment fails, i.e., the

viral load stays or becomes higher than a predetermined threshold,

such as 50/ml, despite adherence to the regimen, a second

genotypic test will be performed to see whether the virus has

acquired new resistance mutations. Since the second half of the

1990s, treatment is usually with a combination of three drugs,

which are chosen such that mutations which confer resistance
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against one of the drugs do not confer cross-resistance against the

other two drugs. Soon after its introduction, it became clear that

triple-drug therapy was an enormous success and saved the lives of

many HIV patients [5]. One reason why therapy with three drugs

works better than treatment with one or two drugs is that the rate

at which resistance evolves is slower when patients are treated with

three drugs [6]. It is commonly thought that resistance does not

evolve in patients on triple-drug therapy because it would require

a viral particle to acquire three mutations at the same time.

However, in patients who are treated with triple-drug therapy, it is

often observed that resistance against one of the drugs evolves, at

least initially. Data from several cohort studies in different parts of

the world, such as from Canada [2] and the UK (UK CHIC

cohort study [3], clearly show that in most patients who fail

therapy due to resistance, the virus is resistant against one of the

drugs and almost never against all three. The UK study, for

example, reports that out of 4306 patients who started therapy

between 1996 and 2003, after two years of therapy, 13% have

drug resistance. A majority of the patients with drug resistance

(7%) have resistance against just one of the drugs. Less than half of

the patients (6%) have resistance against more than one class of

drugs and a only small number of patients (1%) have resistance

against 3 classes of drugs, even though all patients of this cohort

were treated with three classes of drugs. These data show that

treatment can fail due to resistance against one of the drugs in a

regimen. In such cases, it may be that the other two drugs cannot

keep the VL completely suppressed, even though they still work.

The viruses that have acquired resistance against two or three

classes of drugs may have acquired these mutations at the same

time or they may have acquired them one by one. For now, we will

assume the latter and focus only on the probability of acquiring the

first drug resistance mutation (DRM).

For many common drugs, especially reverse transcriptase

inhibitors, a single mutation can confer resistance against the

drug and only a small number of mutations is responsible for

resistance in most patients. For example, resistance against the

drug nevirapine is almost always due to one of two amino acid

changes, namely K103N or Y181C in the reverse-transcriptase

gene [7]. Because of the importance of a small number of

mutations, several studies have investigated whether these

mutations are present in untreated patients due to transmitted

drug resistance or due to spontaneous mutation. Recent studies

have used allele-specific PCR and related methods to determine

the frequency of several important mutations in untreated patients.

Low-frequency drug resistance mutations (DRMs), likely due to

spontaneous mutation (and not transmitted from other patients)

were detected in up to 40% of patients (see [8] for an overview).

The detection of drug resistance mutations in untreated patients,

together with the knowledge that a single mutation can confer

resistance against a drug and allow viral escape, suggest that pre-

existing resistance mutations (or standing genetic variation in the

population genetic jargon) may play an important role in the

evolution of drug resistance in HIV.

Throughout the paper, we will assume that a single mutation

can allow viral escape and we focus on the probability that such a

first drug resistance mutation becomes established (i.e., it reaches

such a frequency that it can be expected to become the majority

variant unless treatment is stopped or changed quickly). What

happens after a first mutation has become established, or how fast

such an established mutation wanes in the absence of treatment

are important questions, but they fall outside the scope of this

study. In this paper, ‘‘triple-drug therapy’’ and ART refer to

treatment with two drugs of the class NRTI plus either an NNRTI

or an unboosted PI (for a list of abbreviations in the paper, see

Table 2). The results are likely to be different for other drug

combinations.

Starting therapy
When a patient starts therapy for the first time, one would

expect that there should be a substantial probability that drug

resistance evolves due to pre-existing DRMs. Indeed, recent

studies have shown that the presence of drug resistance mutations

at low frequency (v1%) increases the risk that treatment fails (e.g.,

[9],[10], [7], see [11] for a review). However, the situation is not as

simple as one may hope: even if no pre-existing DRMs can be

detected, resistance mutations may become established quickly,

and even if DRMs are detected, treatment is still successful in the

majority of patients. We will attempt to understand those

observations using population genetic theory. Other authors have

looked at the question of pre-existing DRMs previously (e.g., [12],

Table 1. Abbreviations.

Abbreviation Explanation

VL Viral load, the number of viral particles per ml blood

ART Antiretroviral therapy, here used to mean treatment with
two NRTIs and an NNRTI or an ‘‘unboosted’’ PI

PMTCT Prevention of mother to child transmission

DRM drug resistance mutation

NRTI Drug of class nucleoside reverse transcriptase inhibitor

NNRTI Drug of class non-nucleoside reverse transcriptase
inhibitor

PI Drug of class protease inhibitor, PIs can be used
‘‘unboosted’’ or ‘‘boosted’’ with an additional drug.

NVP Nevirapine, an NNRTI

sdNVP Single dose nevirapine

ZDV Zidovudine, also known as AZT, an NRTI

3TC, DDI, FTC, TDF Drugs of NRTI class

PP Post partem, used here for drugs which are added to
sdNVP right after the mother has given birth

doi:10.1371/journal.pcbi.1002527.t001

Author Summary

For HIV patients who are treated with antiretroviral drugs,
treatment usually works well. However, the virus can, and
sometimes does, become resistant against one or more
drugs. HIV drug resistance results from the acquisition of
specific and well known mutations. It is currently unknown
whether drug resistance mutations usually stem from
standing genetic variation, i.e., they were already present
at low frequency before treatment started, or whether
they tend to occur during treatment. In the current
manuscript, I make use of several large datasets and
evolutionary modeling to estimate the probability that
drug resistance mutations are present before treatment
starts and lead to viral failure. I find that for the most
common type of treatment with a combination of three
drugs, drug resistance evolves from pre-existing mutations
in 6% of the patients. With other types of treatment, this
probability varies from 0 to 39%. I conclude that there is
room for improvement in preventing the evolution of drug
resistance from pre-existing mutations.

Standing Variation and Drug Resistance in HIV

PLoS Computational Biology | www.ploscompbiol.org 2 June 2012 | Volume 8 | Issue 6 | e1002527



[13]), however, it is worth reconsidering the topic. First of all, we

now have a wealth of data available for pre-existing DRMs and

the establishment of drug resistance mutations in HIV patients,

and secondly, we now have a better theoretical framework to

consider the role of standing genetic variation for adaptation [14].

Prevention of mother to child transmission (PMTCT)
Pregnant women in low resource settings are often treated with a

single dose of the non-nucleoside reverse transcriptase inhibitor

neverapine when labor starts. Single dose nevirapine (sdNVP) is the

cheapest and simplest way to reduce the probability of mother-to-

child-transmission, but it is shown to lead to the establishment of

drug resistance mutations in the mothers and the babies. In a meta-

analysis [15], found that, in 7 different studies, on average 44% of

the patients treated with sdNVP had detectable NVP resistance

mutation several weeks after the treatment. The presence of such

mutations makes future treatment of these women harder [16]. To

avoid the establishment of resistance mutations, several alternative

strategies are used in combination with sdNVP. We will use the

same population genetic framework as in the other two cases to try

to understand why sdNVP leads to establishment of resistance

mutations in so many patients, and how this can be avoided. In the

current study we will only focus on the probability that NVP

resistance mutations become established during treatment for

PMTCT. The issue of how these mutations wane and possibly

resurface when treatment is started again is important and

interesting but falls outside the scope of the current paper.

Treatment interruptions
It was long suspected that treatment interruptions lead to drug

resistance. Indeed, cohort studies show that treatment interrup-

tions due to non-adherence are associated with faster accumula-

tion of drug resistance mutations ([17,18,19]. Clear evidence that

treatment interruptions of at least a couple of weeks lead to the

establishment of resistance mutations comes from clinical trials

(e.g., [20,21,22] which were done in a time when it was believed

that treatment interruptions may be beneficial for patients. In

2006 the SMART trial was stopped because treatment interrup-

tions were shown to have a negative effect on patients’ health [23].

However, treatment interruptions still occur, for example, when a

patient is forgetful or is unable to purchase drugs due to financial

or logistic barriers. It is important to understand how treatment

interruptions lead to resistance and whether this effect can be

avoided.

The main idea that currently governs the thinking about

treatment interruptions and resistance is that insufficient drug-

levels allow for replication and, at the same time, select for

resistance (e.g., [24,25,18]. This effect is aggravated when drugs

that are part of combination therapy have very different half-lifes,

so that interrupting combination therapy can result in effective

monotherapy. It is generally believed that this ‘‘tail of monother-

apy’’ is the main reason why treatment interruptions lead to drug

resistance. However, several observations are not compatible with

the ‘‘tail’’ hypothesis. For example, Fox et al ([25]) found no

significant difference in the number of resistance mutations after

simultaneous, ‘‘staggered’’ or ‘‘switched’’ treatment interruptions

in patients from the SMART trial (a ‘‘staggered’’ stop means that

the long half-life drug is interrupted several days before the other

drugs and a ‘‘switched’’ stop means that before interrupting,

patients switch to a regimen with only short half-life drugs). In

addition, the ‘‘tail’’ hypothesis fails to explain why treatment

interruptions increase the risk of resistance in patients on protease

inhibitor-based (PI) regimens which do not have long half-lifes

[26,20,27,28,29,30]. Another explanation is therefore needed to

understand the observed patterns.

When treatment is interrupted, the viral load rapidly increases

until it has reached its original level after approximately four weeks

[31]. Basic population genetics tells us that such population growth

also leads to an increase in the probability that DRMs are present.

When treatment is started again, selection may work on such pre-

existing mutations, which provides a simple explanation for how

treatment interruptions lead to the establishment of resistance

mutations.

In this paper we will attempt to explain the observed patterns by

considering selection on pre-existing variation and selection on

new mutations. It is worth noting here that pre-existing does not

necessarily mean old, such a mutation may have originated just a

day before the start of treatment. Throughout the paper, we use a

mathematical model for adaptation from standing genetic

variation which we developed previously [14] and forward-in-

time, individual-based computer simulations. The model captures

mutation, drift and selection, including changing selection

pressures (due to stopping and starting of therapy) which lead to

changes in population size. Because we only focus on the

establishment of the first drug resistance mutation, we can ignore

epistatic interactions between different drug-resistance mutations

and recombination. In each of the three cases of interest, we use

published data on the percentage of patients with established drug

resistance mutations to estimate important parameter values (for

starting ART or sdNVP) and to predict outcomes (for treatment

interruptions).

Table 2. Parameter values for analytical predictions and
computer simulations.

Parameter Value Explanation

Values roughly based on literature

m 5*1025 Mutation rate to resistant genotype

Nu 2000 Effective population size in
untreated patient

Crel 0.05 Relative cost of mutant in absence
of therapy

FwtART ~FwtNVP 0.5 Absolute fitness of wildtype during
therapy

G 200 Number of HIV generations per
year

Values estimated in current study

NART 108 Effective population size in patient
on ART

NLAT 5 Number of activated latent cells in
patient on ART

NZDV 1000 Effective population size in patient
on ZDV monotherapy

Fwtu 1.62 Absolute fitness of wildtype in
absence of therapy (determines
growth rate during treatment
interruption)

Fmu 1.54 Absolute fitness of resistant mutant
in absence of therapy

FmART 1.017 Absolute fitness of resistant mutant
during ART

FmNVP 1.54 Absolute fitness of resistant mutant
during NVP therapy

FmNVP=PP 1.025 Absolute fitness of resistant mutant
during NVP/PP therapy

doi:10.1371/journal.pcbi.1002527.t002

Standing Variation and Drug Resistance in HIV
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Model

Model, assumptions and fixation probability of a drug
resistance mutation

The model we use in this paper describes the population

dynamics and population genetics of a panmictic viral population

in a single patient. Details of the model can be found in the

supplementary material. We assume that as long as the patient is

not treated, the viral population will be stable at population size

Nu (u for untreated). Drugs reduce the fitness of the wildtype virus

to below 1 so that the population will shrink. We assume that there

is a large reservoir of latently infected cells of which a fixed

number (NLAT ) become activated per generation, so that the virus

can not die out. Drug resistant virus can be created by mutation

and is assumed to be resistant against one of the drugs in the

treatment regimen. If the patient is not taking drugs, the drug

resistant virus is less fit than the wildtype by a factor Crel (relative

cost of the resistant virus), but if the patient is taking drugs, the

resistant virus has a fitness that is higher than 1 (FmARTw1),

whereas the wildtype has a fitness lower than 1 (FwtARTv1). In

reality, there may also be resistance mutations that confer

resistance against one of the drugs, but that do not lead to a

fitness higher than 1. Such mutations will quickly die out and can

safely be ignored in the model. Throughout the paper we focus on

the the processes that allow a first major drug resistance mutation

to become established in the patient. Patients are assumed to be

ART-naive and have no transmitted drug resistance.

Evolutionary biologists have long known that most mutations

will be lost by genetic drift even if they confer a fitness benefit [32].

This is also true for drug resistance mutations (DRMs) in patients

on anti-retroviral therapy, although it is all too often ignored in

drug resistance studies. The clinical relevance of this old result has

recently become very clear. It was found in several studies that

even though low frequency DRMs increase the risk of treatment

failure and establishment of drug resistance, the majority of

patients with detected low frequency DRMs will respond well to

treatment [7]. This result shows that DRMs can die out, even if

they have reached frequencies high enough to be detected. The

reason is probably that most viral particles will not infect any new

cells and produce no new viral particles, even if, on average, they

produce more than 1.

The probability that a DRM becomes established in the patient

depends on the number of copies that are present, the average

number of offspring of the drug resistant particles and the variance

in offspring number. Traditionally, fixation or establishment

probabilities are calculated using the relative fitness difference

between the mutant and the wildtype, but in the case of HIV it is

more useful to use the fitness of the mutant virus to calculate its

establishment probability. The reason is that anti-retroviral

therapy works so well that wildtype fitness may be very low

(much lower than 1). In such case fitness of the mutant may not be

related to the fitness of the wildtype and because the wildtype

cannot grow, the two types do not compete for resources. In other

words, the mutant can occupy a niche that is not occupied by the

wildtype. In those cases, and as long as FmART{1vv1, the

establishment probability of the mutant will be approximately

Pest&
2(FmART {1)

s2 where s2 is the variance in offspring number. In

the simulations and throughout this paper, we use the variance

effective population size, in which case one can assume that s2~1,

so that

Pest&2 (FmART{1) ð1Þ

Note that by setting s2~1, we ignore all mutations which occur

in virus which is not part of the effective population size. The

establishment probability of a mutation in a random viral particle

(e.g., when observed in a patient) may be much lower. It is

important to realize that if the establishment probability of a DRM

depends on its absolute fitness, anything that reduces its fitness will

reduce the establishment probability. For example, if a drug that is

added to a regime reduces fitness of both wildtype and resistant

virus, then it will reduce the probability that a pre-existing resistant

mutant becomes established. This is true even if the effect of the

added drug on wildtype and resistant virus is exactly the same.

Similarly, if the immune system works well, this may also reduce

the probability of establishment.

In most population genetics models, the focus is on the fixation

probability, rather than the establishment probability of a

mutation. And in many models, if a mutation becomes established,

it will go to fixation. However, if selection pressures change,

establishment does not necessarily lead to fixation. This is

especially clear when we will later consider the effect of a single-

dose of nevirapine. A few weeks after a single dose of nevirapine,

nevirapine resistance mutations can be detected in a large

proportion of patients, but these mutations may never take over

the whole viral population, because the treatment duration is very

short and wildtype virus will quickly become a majority again (see

for example, [16]). In fact, the standard results on fixation

probability [32] are really results on establishment probabilities, so

we can use them without problems.

Psgv vs. Pnew
For drug resistance to evolve, the viral population needs viral

particles that carry drug resistance mutations. Such particles may

already be present before treatment is started. To denote this

possibility we use Psgv or the probability that drug resistance

establishes from the standing genetic variation. If the mutation is

not already present, or if was present but was subsequently lost,

then the viral population has to wait for a new mutation to occur

and become established. We denote this possibility as Pnew, or the

probability that resistance evolves due to new mutations. In the

latter case, we have to indicate a time window, such as per year or

per generation.

The goal of this study is to understand and, albeit roughly,

quantify Pnew and Psgv for HIV drug resistance in patients on

triple-drug regimes (consisting of an NNRTI or an unboosted PI

plus two NRTI’s) and in patients who are treated with single dose

nevirapine.

Results

Starting standard therapy
When a patient starts anti-retroviral therapy for the first time,

the viral population in that patient will move from an equilibrium

without drugs to an equilibrium with drugs. At the pre-treatment

equilibrium, the viral population size will at its equilibrium level

(Nu), and resistance mutations are expected to be at mutation-

selection-drift equilibrium, where most mutations will be present at

very low frequencies (see, e.g., [7]). Note that mutation-selection-

drift equilibrium is reached quickly for mutations that are very

costly to the virus. So even though it may take years for neutral

diversity to reach an equilibrium level in an HIV patient [33],

important drug resistance mutations which are 5 or 10% less fit

than the wildtype are expected to reach their (dynamic)

equilibrium in weeks or months.

Standard population genetic theory predicts that the average

frequency of a resistance mutation is equal to the mutation rate (m,

per viral particle and per replication) divided by the relative cost

(Crel ) of the resistance mutation, though drift causes actual

Standing Variation and Drug Resistance in HIV
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frequencies to vary greatly between different time points and

between patients (see also [34]). Even though the average

frequency is independent of the population size, in larger

populations, it is more likely that DRMs are present and the

absolute number of drug resistant particles will, naturally, be

higher. When treatment starts, resistance mutations will confer a

fitness benefit to the virus and they can (but are not guaranteed to)

increase in frequency and become established. The probability

that this happens depends on the number of resistant particles in

the population and on the establishment probability of a mutation

that is present in a single particle. In [14] we derived formulas to

calculate the probability that adaptation to a new environment

happens from the standing genetic variation (Psgv). We will use the

approximate equation 8 in [14]:

Psgv&1{(1z
FmART{1

Crel

){2mNu ð2Þ

It is also possible to use the the number of resistant particles in a

patient (B), if this is known, and the fitness of these copies (in the

environment with drugs) to calculate the probability that a

resistance mutation becomes established:

Psgv~1{(1{Pest)
B ð3Þ

where we use the probability that all copies of the resistance

mutation die out to calculate the probability that at least one

survives. The probability that resistance mutations become

established increases with the number of copies of resistant virus

and the probability that any one of these survives.

Evolution of resistance during therapy
If resistance did not evolve from standing genetic variation, it

may evolve due to new mutations. The probability that this

happens in a given year will depend on the number of generations

(G) in a year, the mutation rate (m), the effective population size

during antiretroviral treatment (NART ) and the establishment

probability of a mutation (Pest). In principle, the establishment

probability during therapy may not be the same as in the very

beginning of therapy, for example because the number of available

cells which a particle can infect could be different. However,

throughout this paper we will assume that Pest depends only on the

kind of therapy and not on how long a patient has been treated.

Using a poisson approximation, we find that the per year

probability that resistance evolves is

Pnew~1{exp ({G NART m Pest) ð4Þ

It is debated whether during therapy, there is ongoing

replication or whether a reservoir of latently infected cells is

entirely responsible to residual viremia. If the reservoir reflects the

composition of the viral population before treatment, then the

expected frequency of the resistance mutation in the reservoir

would be m
Crel

. If the number of latently infected cells that become

activated every generation is NLAT , then the expected number of

activated cells with resistant virus would be NLAT m
Crel

. The per year

probability that resistance evolves due to activated cells from the

reservoir would be

Pnew~1{exp (
{G NLAT m Pest

Crel

) ð5Þ

It is also possible that there is ongoing replication, but that the

reservoir also plays a role at the same time, so that the reality will

be reflected best by a combination of equations 4 and 5. Note that

NART and NLAT are both effective population sizes, and may be

much lower than the census population sizes.

Comparison with data and parameter estimation
Published data show that the rate of evolution of drug resistance

is roughly constant over long times (see for example the study by

[3], in which patients were followed for up to eight years). This fits

with expectations if NART and Pest remain constant so that Pnew

stays constant. However, several studies show that the probability

that resistance mutations become established is higher in the first

year of therapy, as compared to later years. This can be seen, for

example, in a study on a large cohort in British Columbia,

especially when one considers the most adherent group of patients

(figure 2 in [35], see also [17]). A similar effect is seen in [11] when

one considers the patients with pre-existing DRMs. This effect,

that resistance is more likely to evolve in the first year of therapy as

compared to later years, can be easily explained by standing

genetic variation.

Under the assumption that Pnew is indeed constant, we can use

published data to estimate both Pnew and Psgv. Margot et al [36]

reported the number of patients in which resistance was detected

in the first, second and third year after treatment initiation in a

cohort of patients who were treated with NNRTI-based ART.

The reported data (see table S1 in supplementary text S2) show

that the probability that resistance was detected in the first year

was 9.5%, whereas in the second and third year it was only 3.7%

(see supplementary material for details on how this was estimated).

The difference of 5.8% is likely due to standing genetic variation at

the start of therapy.

We will use the estimates for Pnew (0.037 per year) and Psgv

(0.058) from [36], in combination with other, published, estimates

to get a rough estimate of the important evolutionary parameters.

First of all, we will assume that the mutation rate from one

nucleotide to a specific other nucleotide is 10{5 [37], so that if

there are five main resistance mutations for a given drug

combination, the total mutation rate is approximately 5|10{5.

For the remainder of the paper, we will only use this total mutation

rate. If the mutation rate would be higher (lower) than our

assumption, the estimated population sizes would be lower (higher)

than our estimates. An overview of the parameter values we use in

the paper is given in table 2.

We know that the important drug resistance mutations are at

least somewhat costly for the virus. Their cost, Crel , has been

estimated for several drug resistance mutations, both in vivo and in

vitro (for an overview on resistance mutations in the reverse

transcriptase gene see [38]). For example, [39] find that the

relative cost of resistance mutation M184V is approximately

0:04{0:08. Wang et al [40] estimate a cost of 0:01{0:04 for

K103N, which is the most common NNRTI resistance mutation.

Other studies were not able to detect any cost of K103N, but given

its low frequency in untreated patients [7], it seems likely that it is

associated with a significant cost. In this paper we will use an

average cost of 0:05 for all mutations.

Given the cost, the mutation rate, Psgv and Pnew, and using the

assumption that there are 200 HIV generations in a year [41], we

can find the combinations of Nu, NART and FmART that are

compatible with the data (shown in figure 1). Estimates for the

effective population size in untreated patients range from 103 [42]

to 105 [43]. We know that a large proportion of untreated patients

carries low frequency drug resistance mutations, but not all

patients, which gives us some additional information about the
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population size in an untreated patient (see figure 1b). If we choose

a value of Nu of 2|103, then we find that about half of the

patients should carry pre-existing DRMs. This is somewhat higher

than what is usually detected, but that can be due in part to the

limits of detection of current tests [8]. An overview of the

parameter estimates that were used in the simulations and for

analytical predictions can be found in table 2.

Given our choice of Nu, we find that FmART must be

approximately 1:017, leading to Pest&0:034. Under the assump-

tion Pest stays the same during treatment, the Margot et al data are

compatible with a 18-fold reduction of the effective population size

due to therapy, to an effective population size of NART&108 .

Note however, that the estimate of a 18-fold reduction depends

heavily on the assumption that Crel~0:05 . For example, had we

assumed a 10% cost, then the estimated reduction would have

been 37-fold , and for a 1% cost, the reduction would have been

only 4-fold . The reason is that if we assume that costs are high,

then we must also assume that the mutant fitness (FmART ) is

relatively high, in order to find Psgv~0:06, and if FmART is high,

NART must be low, to explain Pnew~0:037.

If the evolution of resistance during therapy is not due to

ongoing replication, but due to continuous activation of latent

cells, then, under the assumption that Crel~0:05, the effective

number of cells (NLAT ) must be approximately 5 per generation.

This means a reduction of effective population size of almost 400-

fold. However, it is not so clear whether in this case the word

‘‘population size’’ should still be used, because the number 5 is not

an estimate of the size of the reservoir, but an estimate of the

effective size of the part of the reservoir that is reactivated every

generation.

The result that the frequency of resistance mutations in the

reservoir depends on their fitness cost ( m
Crel

), whereas the cost does

not play a role for new mutations due to ongoing replication, could

be harnessed to estimate the relative importance of the reservoir. If

the reservoir is the most important source of resistance mutations

during therapy, then the same set of mutations should be found in

patients whose virus acquires resistance quickly after the start of

therapy and in those who acquire mutations during therapy.

However, if ongoing replication is the source of resistance

mutations during therapy, then mutations with a high cost in

the absence of drugs should occur relatively more often during

therapy than quickly after therapy is started.

The data and the results from simulations and predictions (using

equations 2 and 4) are shown in figure 2. The percentage of

patients with resistance after one year is lower in the simulations

than in the analytical predictions, because in the simulations, it

takes time for a mutation to increase in frequency and be detected.

We assume that it is detected as soon as it is more frequent than

the wildtype, the result is that in the simulations (and probably in

reality) Pnew is lower in the first year than in the other two years. It

is unclear how large this effect is in reality, but it means that the

6% we find is a conservative estimate of the role of standing

genetic variation. If it would take 3 months for a mutation to

increase in frequency and become detected, then Pnew in year 1

would be 75% of its value in the later years, and Psgv would be

approximately 7% in stead of 6%.

Single-dose nevirapine for prevention of
mother-to-child-transmission

A single dose of nevirapine (sdNVP) just before labor starts

reduces the risk that a mother transmits HIV to her baby at birth,

but leads to high levels of resistance in many women. Because of

the long half life of nevirapine, even a single dose lasts at least a

few days. However, this is a very short amount of time (only a few

HIV generations) so that probably most or all detected NVP

resistance mutations are due to standing genetic variation.

Because it is known that sdNVP can lead to the establishment of

resistance mutations, and also to further reduce the risk that the

baby becomes infected with HIV, several different treatment

strategies are being used. In this study, we focus only on those

strategies that include a single dose of nevirapine (and exclude, for

example, pregnancy limited triple-drug therapy). Basically, sdNVP

can be combined with either a short course of zidovudine

monotherapy during the third trimester of pregnancy (ZDV/

sdNVP), or it can be combined with additional drugs during and

after labor up to one month postpartum (sdNVP/PP). It can also

be used alone (sdNVP) or combined with both (ZDV/sdNVP/PP),

resulting in four possible strategies.

Under the assumption that all resistance is due to standing

genetic variation, it is straightforward to predict, at least

qualitatively, the effect of the four treatment options. Single dose

nevirapine plus two additional drugs (sdNVP/PP) is a three drug

regimen, and similar to standard antiretroviral therapy (ART),

except that it only lasts a few days or weeks. We therefore expect

similar levels of drug resistance due to standing genetic variation.

If only NVP resistance is considered (and not resistance to the

other two drugs), we expect to find somewhat lower levels than in

the normal case, although the difference may not be large because

resistance against NVP is more common than resistance to most

other drugs. Treating with only sdNVP is different from starting

ART, in that there is only one drug. The result is that the fitness of

both wildtype and resistant virus will not be reduced as much as in

the normal case. Specifically, NVP resistant virus will have a

relatively high fitness during NVP monotherapy. This high fitness

(FmNVP) leads to a high establishment probability (Pest) for

available resistance mutations. In fact, the establishment proba-

bility may be so high that in virtually all patients that carry some

Figure 1. Probability of detecting resistance per year of
treatment. The probability that resistance is detected for the first
time in the first, second or third year of treatment, given that it was not
detected until then. Grey bars are the estimates from the Margot et al
([36]) dataset, and the number of patients on which the estimates are
based are noted at the top of the graph. The red dashed area reflects
the inferred probability that resistance mutations from standing genetic
variation become established. The black squares are values calculated
using equations 2 and 4. The red circles are estimated from 1000
simulations. Parameters as in table 2.
doi:10.1371/journal.pcbi.1002527.g001
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NVP resistance before treatment, the resistant virus will increase in

frequency during NVP treatment.

An interesting treatment option is to start with a few weeks of

ZDV monotherapy before treating with a single dose of

nevirapine. The ZDV treatment will reduce the population size

of the virus, Nu, so that the probability that NVP resistance is

available and the copy number of such resistant mutants if they are

available will be lower by the time the patient is treated with NVP.

ZDV monotherapy ultimately leads to ZDV resistance, but the

risk that resistance mutations become established during a short

course is small. ZDV monotherapy reduces the viral load

approximately three-fold [44]. Finally, adding ZDV treatment

before labor and two additional drugs during and after labor

(ZDV/sdNVP/PP) will reduce both the availability of NVP

resistant virus and the establishment probability of such virus,

which should lead to an even lower probability that NVP

resistance mutations from standing genetic variation become

established.

Comparison with data for single dose nevirapine
We identified 23 published studies that reported on NVP

resistance 6 to 8 weeks after women were treated with sdNVP.

Several of the studies directly compared two different treatment

options. We found at least three studies for each of the four

different treatment options. An overview of the studies can be

found in table S2 in the supplementary text S2. For each study we

recorded which of the four treatment options was used and in how

many of the patients NVP resistance mutations were detected

using simple Sanger (population) sequencing (we excluded studies

that only recorded deep-sequencing or allele-specific PCR results,

as there were too few of those to allow us to compare the treatment

options). For each of the four treatment options, we also calculated

the overall probability that resistance mutations were detected in a

patient (simply by summing the number of patients with resistance

and summing the total number of patients in the studies). We

found that sdNVP leads to detectable resistance mutations in 39%

of 952 patients, ZDV/sdNVP leads to detectable resistance

mutations in 22% of 888 patients, adding two drugs during and

after labor (sdNVP/PP) lead to detectable resistance mutations in

7.8% of 372 patients and ZDV/sdNVP/PP lead to detectable

resistance mutations in none of 292 patients (see figure 3).

We now used these data, in combination with our previous

parameter estimates, to estimate the fitness of a NVP resistant

mutant during NVP therapy (FmNVP) and the reduction of the

population size due to ZDV treatment (NZDV ). We find that

FmNVP&1:54 and that ZDV reduces the effective population size

approximately two-fold (table 2 and figure 4). The results show

that a reduction in population size by ZDV monotherapy does

reduce the probability that NVP resistance mutations become

established, but adding two drugs to sdNVP helps much more. We

also estimate the fitness of the mutant during therapy with

nevirapine and two additional drugs and find a slightly higher

value than our previous estimate (1:025 vs 1:017), though these

differences are not statistically significant.

Interruption of therapy
During a treatment interruption, drugs are first removed from

the body, which can take from a couple of hours to a several days

or even weeks ([45,46,47]. With some delay, depending on the

half-life of the drugs, the viral population begins to grow, which is

observed as an increase of viral load (see figure 5). Published data

show that after treatment is stopped, viral load quickly increases in

almost all patients (e.g., [2]. Davey et al [31] show that average

viral load plateaus four weeks after treatment is interrupted.

Garcia et al [48] and Trkola et al ([49]) both report that a plateau

is reached between four and eight weeks after treatment

interruptions. An interruption is ended when treatment is started

again and viral load goes down, hopefully to undetectable levels.

Figure 1 shows a cartoon of the pharmacodynamics and

population dynamics of a treatment interruption.

Restarting therapy
If the length of a treatment interruption is so long that the

population size is back to pretreatment level and mutation-

selection-drift equilibrium is again reached, the probability that

resistance mutations become established when therapy is started

again will equal the probability that resistance mutations become

established the first time a patient starts treatment, Psgv from

equation 2. But if a treatment interruption is shorter than that, it is

Figure 2. Possible combinations of population size and fitness
and the effect of population sizes on the probability that DRMs
are present before treatment. Figure 2a: Continuous line:
combinations of population size before treatment (Nu) and fitness of
mutant virus during therapy (FmART ) that lead to the observed
probability that resistance mutations from standing genetic variation
become established (Psgv~0:058). Dashed line: combinations of
population size during treatment (NART ) and fitness of mutant virus
during therapy (FmART ) that lead to the observed probability that
resistance mutations from standing genetic variation become estab-
lished (Psgv~0:058). Open dot: Nu~2000 and FmART~1:017, closed
dot: NART ~108, FmART~1:017. Figure 2b: Probability that a patient
has any pre-existing DRMs before the start of therapy for different
population sizes, and m~5|10{5. Open dot: Nu~2000.
doi:10.1371/journal.pcbi.1002527.g002
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hard to calculate the exact probability that resistance will evolve

upon re-initiation of therapy because neither population-dynamic,

nor population-genetic equilibrium will have been reached. The

absence of the population-genetic equilibrium is most problematic

if resistance mutations are not very costly to the virus. However,

for a costly mutation it takes only on the order of 1=Crel

generations to reach mutation-selection-drift equilibrium. The

absence of population-dynamic equilibrium is less problematic,

because it is relatively easy to predict the population size of the

virus or to measure viral load. In the simulations, we allow the

population to grow exponentially until it reaches the baseline level.

The resulting population size can be plugged into equation 2 to get

an estimate of the probability that resistance mutations become

established due to a treatment interruption.

Comparison with data for treatment interruptions
Using the parameter values from the last two sections, we can

predict the risk that resistance mutations become established due

to a treatment interruption of a certain length. We use the

estimated fitness of the mutant virus during NVP therapy, and

assume that the fitness of the mutant in absence of drugs is the

same. With that value, we can calculate the fitness of the wildtype

in the absence of drugs, because of the assumption that the cost of

the resistance mutation is 5%. The wildtype fitness will determine

how fast the virus grows in the simulations after treatment is

interrupted, and therefore how long it takes before the population

size is back at the pretreatment level. Specifically, we use

Fwt~1:62. In the simulations, the population size plateaus after

just 14 days, but Psgv reaches its expected value only after 60 days

(figure 6).

We collected information from structured treatment interrup-

tion trials to test the predictions. The probability that resistance

mutations become established due to a single treatment interrup-

tion was estimated for seven clinical trials with different lengths of

treatment interruptions [50,22,51,52,53,54,20]. An overview of

the trials can be found in table S3 in text S2 (supplementary

material). We first calculated the risk under the assumption that all

observed resistance was due to treatment interruptions and then

subtracted the estimated probability that resistance mutations

become established during therapy. The corrected values are

shown in figure 6. The data show that longer treatment

interruptions indeed lead to a higher risk of resistance. The risk

plateaus around 37 days, which is consistent with the time it takes

for viral load to reach its equilibrium level (although the

simulations suggest that the risk should plateau later than the

population size). The highest risk was found to be approximately

6% per interruption, just like the risk of starting therapy for the

first time.

Discussion

The main aim of our study was to understand and quantify the

importance of standing genetic variation for the evolution of drug

resistance in HIV. We find that the probability that at least one

resistance mutation becomes established due to standing genetic

variation (Psgv) depends on the kind of treatment chosen. Most

clearly, it is much higher when treatment is with sdNVP (which is

monotherapy) than if treatment is with triple-drug combination

therapy. For standard combination therapy (ART), we use two

different data sources to estimate the probability that resistance

mutations from standing genetic variation become established. In

the first part of this paper we used data on the number of patients

in which resistance was detected in the first year of treatment

versus later years. In the third part of this paper we used data from

clinical trials on treatment interruptions. In both cases, we found

that the probability that resistance mutations from standing

genetic variation became established was approximately 6%.

The importance of new mutations as compared to pre-existing

mutations could be estimated from the Margot et al ([36]) study.

We estimated that the probability that a resistance mutation

becomes established during therapy (Pnew) is 3.7% per year, which

means that pre-existing mutations and new mutations are equally

important after about one-and-a-half year of treatment. Two of

the interruption studies also provided estimates for Pnew, which

were slightly higher (4.3% and 4.8% per year) than the estimate

from the Margot et al [36] study (see table S3 in text S2). It is likely

that some of the patients in these studies were not perfectly

adherent to treatment, so that our estimate of Pnew is inflated by

patients who interrupted treatment. This does not affect our

estimates of Psgv. However, it means that the relative importance

of pre-existing mutations is highest in completely adherent patients

(because new mutations are relatively unimportant for them) and

lower in non-adherent patients (see [7] but see [11]).

A stochastic model was used to understand the effect of standing

genetic variation on the evolution of drug resistance during HIV

treatment. Four parameters are crucial to understand the role of

standing genetic variation. Three of them determine the amount

of genetic variation that is available (effective population size,

mutation rate and cost of the resistance mutations) and one

determines how likely it is that the available mutations become

established (the absolute fitness of the resistant virus during

treatment).

The cost and the mutation rate are parameters that are different

for each specific mutation. Together, they determine the expected

frequency of the mutant in an untreated patient. For example, in

untreated patients the frequency of K103N was found to be lower

Figure 3. The probability that resistance mutations are
detected in women treated for prevention of mother-to-child
transmission. The probability that resistance mutations are detected 6
to 8 weeks after treatment with single dose nevirapine. Black crosses
are data from single studies, grey bars with estimated standard error are
percentages for all studies combined (the number of patients that were
used to calculate this percentage is indicated at the top of the graph).
Red circles with standard error are results from 1000 simulations and
the black squares are analytical predictions. Parameter values as in
table 2.
doi:10.1371/journal.pcbi.1002527.g003
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than the frequency of Y181C [7], suggesting that m=Crel is lower

for K103N. The costs for some of the most important mutations

(M184V, K103N) have been estimated and are between 1 and

10% ([38,39,40]. Throughout this paper we used a value of 5%.

The effective population size in an untreated patient (Nu)

determines how much variation there is in the frequency of

resistant mutants between patients. If Nuw1=m, the frequency in

each patient will be very close to the expectation, m=Crel , but if

Nuv1=m, there will be a lot of variation between patients, and in

many patients no resistance mutations may be available at all.

Data suggest that in HIV the latter is the case (e.g., [7]), which

means that, not every single point mutation is created every

generation in an HIV patient. Or, more precisely, each mutation

may be created, but not in a viral particle that is part of the

effective population size. Mutations may even be detected in the

blood stream of a patient, but may still be irrelevant if the viral

particles with the mutations are eliminated before they can infect a

CD4 cell. Nu also determines the number of resistant viral particles

in a patient with a given frequency of the mutant. With higher Nu,

there will be a higher number of resistant particles, and this makes

it more likely that resistance mutations become established when

treatment is started [11].

We find that data are compatible with an 18-fold reduction of N

due to ART and a two-fold reduction of N due to ZDV

monotherapy. The estimated reduction depends on the assumed

cost of mutations; if we assume that mutations are twice as costly,

we would find a reduction that is twice as severe. Still, the

reductions we find are not nearly as severe as one may have

expected based on viral load reductions. During ART, VL may be

reduced 1000-fold or more (in the Margot ([36]) study from which

we used the data, patients had a viral load of, on average, 8|104

before treatment, whereas after 48 weeks of treatment, about 80%

of the patients had a viral load of less than 50, [55]). This

discrepancy may be due to two effects: firstly, our estimate is an

average for many patients and this average may be driven up by

patients in which the drugs do not work well, or who are not

adherent to therapy so that their VL does not go down as much as

expected. Secondly, the relationship between effective population

size and viral load may not be linear, so that a thousand-fold

reduction in VL may translate in only a twenty-fold reduction in

effective population size.

The fourth important parameter is the fitness of the mutant

virus during treatment (Fm), which determines the establishment

probability (Pest).Fm will depend on both the drugs that are used

and on the specific mutation. For example, the resistance mutation

K103N is more likely to become established during sdNVP than

during triple-drug therapy, because additional drugs reduce Fm

(FmARTvFmNVP). And during triple-drug therapy, K103N is

more likely to become established than Y181C (even though

Y181C is present at higher frequencies before treatment), likely

because FmART is higher for K103N than for Y181C.

Starting of standard therapy
We assumed that the rate of evolution due to new mutations is

constant and that the establishment of a resistance mutation from

standing genetic variation leads to viral failure and is detected

within one year of starting therapy. Maybe the most convincing

evidence for these assumptions comes from the Li et al [11] study,

Figure 4. Probability of the establishment of DRMs as a function of effective population size and the fitness of the resistant mutant
during treatment. The predicted probability of the establishment of drug resistance mutations from standing genetic variation depending on the
effective population size and the fitness of the resistant mutant during therapy. Grey scales indicate the probability of the evolution of drug
resistance due to standing genetic variation. Dots indicate estimated parameter combinations for treatment with just sdNVP, with ZDV monotherapy
followed by sdNVP (ZDV/sdNVP), with sdNVP followed by two additional drugs postpartum (sdNVP/PP) and with ZDV monotherapy followed by
sdNVP and two additional drugs postpartum ZDV/sdNVP/PP.
doi:10.1371/journal.pcbi.1002527.g004
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where their figure 2 shows that (1) patients without detected pre-

existing DRMs show a constant rate of evolution of resistance and

(2) patients with detected pre-existing DRMs show an increased

rate compared to the patients without pre-existing DRMs, but

only in the first year of treatment. We used these assumptions to

estimate the probability that resistance mutations from standing

genetic variation become established. However, the estimated role

of standing genetic variation may be a slight underestimate,

because establishment of new mutations should need some time so

that Pnew would normally be somewhat lower in the first year of

treatment. The observation that the effect of standing genetic

variation only lasts a year, means that fixation of a resistance

mutation must take less than a year. This limits possible values for

NART and FmART to such values for which the fixation time is less

than 200 generations.

If resistance indeed evolves due to standing genetic variation in

6% of patients on standard ART, then there is clearly room for

improvement. Note that those 6% of patients have already lost

their first treatment option shortly after having started treatment.

They have to switch to second-line treatment which is more

expensive, usually more complicated (more pills per day) and likely

has more side effects. It is therefore worth exploring ways to avoid

the establishment of resistance mutations from standing genetic

variation. Figure S2 suggests two options to reduce Psgv, by

reducing the population size or by reducing the fitness of the

resistant mutants. The first may be achieved by ZDV monother-

apy, as shown in the section on PMTCT, whereas the second may

be achieved by adding additional drugs to the treatment.

Obviously, triple-drug combination treatment is already standard

for most HIV patients, but it may be worth considering specifically

which treatment options would be best to prevent the evolution of

resistance from standing genetic variation. This may mean, for

example, to add a fourth drug to the therapy in the first couple of

weeks of treatment. Resistance to boosted PI’s is very uncommon,

so they may be a good choice for starting treatment, in

combination with two or three other drugs.

Resistance due to sdNVP
Studying treatment with a single dose of nevirapine gives us a

unique opportunity to study the effect of standing genetic

variation, because treatment is so short (only a few HIV

generations) that we can assume that most or all resistance

mutations that are detected are from standing genetic variation.

Data show that the risk that resistance mutations become

established due to such treatment is very high (39%). We find

that this high probability can be explained entirely by selection on

pre-existing drug resistance mutations, because the fitness of NVP

resistant virus is probably very high during NVP monotherapy.

We estimate that its fitness is approximately 1.5. The probability

that a resistance mutation becomes established can be reduced by

either adding additional drugs to lower the fitness or by lowering

the population size so that fewer mutants are available. A study

from Zambia [56] showed that the additional drugs even help to

reduce the establishment of NVP resistance mutations consider-

ably if the additional drugs are given as a single dose (in stead of

treatment for a couple of days or weeks). We did not include this

study in the overview, because there was only one study that

looked at this treatment option.

The results on ZDV/sdNVP/PP treatment (i.e., treatment with

ZDV during pregnancy and NVP plus two other drugs during

labor) are surprising in that NVP resistance mutations were not

detected in any of the women who received this treatment, even

though the model would predict that mutations would be detected

in 4% of the women. Most of the data on this treatment option are

from the Lallemant [57] paper (222 women). In this study, the

authors do find some mutations that confer resistance to the

NRTI’s in the study (in 2.3% of the women). The same study also

looked at women who were treated with ZDV/sdNVP and also in

these women the percentage with resistance mutations was very

low (6.4%) and much lower than the mean value for women who

receive this treatment (22%). The reason for the surprisingly low

values of drug resistance in this study could be that the women in

the study had very low viral loads (median 2800). This probably

also means that they have a low effective population size. It

therefore seems unlikely that the extremely good results from the

Lallemant study [57] can be replicated in other populations.

However their results still show that using additional drugs to

reduce the population size and to reduce the fitness of the mutant

may be a good strategy to reduce the probability that resistance

becomes established.

Treatment interruptions
Considering treatment interruptions, our model provides several

testable predictions. 1) resistance mutations are more likely to

become established after long treatment interruptions when viral

loads are higher, 2) the risk that resistance mutations become

established due to a treatment interruption can not be larger than

the risk at the start of treatment, 3) treatment interruptions

Figure 5. Drug level and population size during and after a
treatment interruption. Drug level (dashed line) and viral population
size (solid line) during and after a treatment interruption. Red bars
indicate when drugs are taken.
doi:10.1371/journal.pcbi.1002527.g005
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increase the risk of establishment of resistance mutations even for

drugs with short half-lifes.

Data from seven clinical trials show that indeed, longer

interruptions increase the probability that resistance mutations

become established (figure 6). Moreover, the estimated probability

appears to plateau after 37 days, which is similar to the time it

takes for viral load to reach its pretreatment level. This suggests

that the risk of establishment of resistance mutations is directly

linked to the viral load when treatment is started again. The

second prediction was also found to hold: the estimated risk that

resistance mutations from standing genetic variation become

established at the start of treatment was found to be similar to the

risk due to a long treatment interruption (6% in both cases). The

third prediction also holds, as data show that interruptions

increase the risk of establishment of resistance mutations even

for PI based treatment [20,51], where the ‘‘tail of monotherapy’’

cannot explain the observations.

A potential problem with the data is that not only the length of

the interruptions, but also the length of treatment periods between

the interruptions differed between the seven studies. The trials that

were compared also differed in the drugs that were used (see table

S3 in text S2), which makes direct comparison difficult. Despite all

these limitations, it becomes clear that longer interruptions carry a

higher risk of evolution of resistance than shorter interruptions.

If interruptions lead to the establishment of resistance mutations

only due to the ‘‘tail of monotherapy’’, as is usually assumed in the

HIV literature [24,25,18], we would predict that: 4) treatment

interruptions increase the risk that resistance mutations become

established only for drugs with long half-lifes, 5) the risk that

resistance mutations become established due to a treatment

interruption is unrelated to the risk at the start of treatment and 6)

the largest risk would be due to an interruption with a length that

is exactly the time it takes for the last drug to lose its effect on the

wildtype virus. All of these predictions do not hold. This is not to

say that the ‘‘tail of monotherapy’’ is not important at all. But it

does show that on its own, the ‘‘tail of monotherapy’’ cannot

explain the risk that resistance mutations become established due

to treatment interruptions. When one considers possible interven-

tion strategies, this may be good news. If treatment interruptions

are risky because of restarting rather than stopping therapy, this

would give doctors a possibility to reduce the risk that resistance

mutations become established even after a patient has already

stopped taking his or her drugs. The establishment of resistance

mutations at re-initiation of treatment may be avoided by

pretreatment (such as with ZDV) to reduce the availability of

mutations or by using more drugs or higher doses in the first weeks

of treatment to reduced the establishment of pre-existing

mutations.

General remarks
We have used a population-dynamic and population-genetic

model to study several patterns of drug resistance in HIV. The

model explains why resistance mutations are likely to become

established in the first year of standard treatment, in women who

are treated with a single dose of nevirapine and in patients who

interrupt treatment. In all three cases, standing genetic variation

can explain the observations.

Our results illustrate that for adaptive evolution to happen,

selection and the creation of new variation need not happen at the

same time, if selection can work on standing genetic variation. In

Figure 6. The relationship between the length of a treatment interruption and the probability that DRMs become established.
Estimated probability that resistance mutations become established due to a single treatment interruption. Grey bars are data from seven clinical
trials, z={ estimated standard error (see supplementary table S3 in text S2). The number of patients (and the number of interruptions per patient)
are noted at the top of the graph. The red circles are estimated from 1000 simulations, z={ estimated standard error. The black squares are
predictions using the average population size from the simulations and equation 2. Parameters as in table 2.
doi:10.1371/journal.pcbi.1002527.g006
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the case of antiretroviral treatment, this means that insufficient

drug levels (which allow for replication and selection at the same

time) are not a necessary condition for the evolution of drug

resistance. This result about time-heterogeneous drug levels is

similar to the result on heterogeneity in space by Kepler and

Perelson [58], who showed that genetic variation may be created

in compartments where drugs cannot penetrate whereas selection

happens in other compartments.

Our model provides a simple and quantitative explanation for

why resistance is less likely to evolve when patients are treated with

multiple drugs in stead of just one drug. Additional drugs reduce

the fitness of a mutant that is resistant against one drug, and

therefore the establishment probability of such a resistant mutant.

In addition, additional drugs reduce the population size of the

virus and thereby the creation of new resistance mutations. This

means that there will be fewer resistance mutations with lower

establishment probabilities, together leading to a strong reduction

in the probability that resistance evolves. In newer therapies with

boosted PIs, drug resistance has become very rare [3], which may

be because boosted PIs are so strong that no single mutation can

lift the virus’ fitness above 1.

The model in this study may be relevant to other diseases than

HIV. For example, the evolution of resistance is a problem in

chronic myeloid leukemia (CML) which is a cancer of white blood

cells. A recent study suggested that the probability that drug

resistance evolves in CML goes down with time because the

population size of the cancer goes down with time [59].

Resistance is also a problem in tuberculosis (TB), and in TB it is

also known that treatment interruptions increase the risk of

evolution of resistance [60]. This effect may also be due to an

increased population size during the interruptions. In general,

stopping treatment may be risky in cases where treatment has to

be started again, which is always the case for HIV and often for

TB. Each time therapy is started, resistance mutations from

standing genetic variation may become established, and even if

this risk is only a few percent it adds up quickly when patients

interrupt treatment regularly.
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